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LAPLACIAN GROWTH OF PARALLEL NEEDLES:
THEIR MULLINS-SEKERKA INSTABILITY

J.-F. GOUYET AND M.-O. BERNARD

Laboratoire de Physique de la Matiere Condens~e,
j~cole Polytechnique, F-91128 Palaiseau, France

E-mail: jean-francois.gouyet~polytechnique.fr; narc-olivier.bernard@polytechnique.fr

We study analytically the kinetics of growth of parallel needles, using a conformal trans-
formation to set up the iterative nonlinear equations. This allows to build the discrete
Fokker-Planck equation for the probability of finding at time t a given distribution of
needle lengths. We consider here two specific cases: we find the exact Fokker-Planck
equation for pairs of needles and its solutions, and the linear behavior of a set of n nee-
dles with equal initial lengths. The corresponding Fokker-Planck equations show the
short-wavelength Mullins-Sekerka instability of these parallel needles, and the possible
structure of the screening leading to the scale invariance of the model.

1 Introduction

Laplacian growth is an ubiquitous process of considerable physical interest: start
of dendritic growth of crystalline structures during solidification when the diffusion
length is large, electrodeposition, viscous fingering, dielectric breakdown or growth
of bacterial colonies, belong to Laplacian growth and can be described by Diffusion
Limited Aggregation models (DLA)'. Related physical phenomena include me-
chanical cracking, like mud during drying, crack formations in pieces of materials
under strain. The Laplacian field takes its origin in the diffusion of material in
front of the growing structures, particles which aggregate, nutrient in the growth
of bacterial colonies, or in the electric field as in electrodeposition or in dielectric
breakdown. In most situations, branching occurs during the growth, leading to
DLA structures. In spite of the apparent simplicity of the physical laws governing
these systems, and the very simple simulation models containing the essence of the
physics, our analytic understanding of DLA remains very unsatisfactory. Essence
studies have used extended numerical simulations to extract the scaling laws gov-
erning these systems. Therefore a more modest but useful approach consists in a
better understanding of DLA growth in the absence of branching2 ' 3 . Again, in this
simpler problem of growing needles, we can consider radial or parallel needles, as
well as reflection (model R) or absorption (model A 4 ) of particles (see for instance
Krug5 , for a review). In this paper we will concentrate our attention on systems
of parallel absorbing needles which, we think, are of more fundamental interest. In
two dimensions, conformal mapping allows to obtain analytical results as shown by
Derrida and Hakim 6 for radial needles.

An important question in such systems is the competition between the nee-
dles. The instability of an initial distribution of equal lengths needles, as well as
unstable modes of a growing fiat interface in dendritic growth, is known as the
"Mullins-Sekerka" instability7 . In a recent experiment, Losert et al.8 showed the
spatial period-doubling instability of dendritic arrays in directional solidification
as suggested theoretically by Warren and Langer 9 . It will be the purpose of this
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preliminary paper to establish the basic Fokker-Planck equation for the growth of
n parallel needles, in the linear regime, which leads to the Mullins-Sekerka behav-
ior. We will indicate in a few words, on the basis of the exact solution for pairs of
needles, what we can expect for the general behavior of n parallel needles.

To study analytically the needle models of Laplacian growth in 2-dimensional
systems, the most convenient approach is to use conformal transformations. We will
only give in Sec. 2, the main arguments to set up these transformations, and the
reader is referred to Shraiman and Bensimon1 °, Sz6p and Lugosi11 , Peterson and
Furry 12 , Kurtze13 , and Derrida and Hakim6 . For the dynamics, we will follow here
Derrida et al.6 ,14 . In Sec. 3 we write the closed set of equations which describes
the time evolution in a compact matrix notation. In Sec. 4, we solve exactly the
general two-needles case, and establish the associated Fokker-Planck equation. The
case of n growing parallel needles is examined in Sec. 5, and the linearized equations
are derived in Sec. 6. These Fokker-Planck equations reveal the short wavelength
instability leading to period-doubling.

Two ingredients are needed for the Laplacian growth : on the one hand the
Laplacian behavior determines the long range interaction characteristic of DLA
growth, but on the other hand the inherent Mullins-Sekerka instability could not
operate without the presence of local noise. This noise can be introduced 6,14 in
the initial state. We chose here to consider a discrete model with diffusing particles
of finite size bf sticking to the needles at discrete time intervals.

2 The basic conformal transformations

The classical way to parametrize in a convenient manner Laplace's equation with
a zero potential boundary condition on a set of n parallel needles is to introduce
first a transformation which maps the unit circle in the complex plane z onto an
n-branched star in the complex plane w:

w = f(z) = AzIFjo (1 -eioj/z) Oj with E_-e = 2. (1)

In this transformation, 7raj is the angle between two successive needles {j - 1, j},
the sum of the angles being 27r (equ.(1)). The angles Oj fix the lengths fi of the
needles, and A is a parameter which will be determined below.

A second transformation maps the star in the complex plane w into a set of
parallel needles in a complex plane Q :

Q = logw. (2)

In the plane Q, the Laplacian field is D (Q) = Re [log (f- 1 (expQ))].
The tip positions in plane z are parametrized by the angles i5:

zi =exp (i~j) , 0 <i <n -lI, (3)

and the lengths of the needles are the modulus of log (f(z)) at the points z = zi:

fi = log (4A) + -1___ j log Isin ((Oi - Oj)/ 2 )I , V 0 < i < n - 1. (4)
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The n additional constraints must be imposed onto the angles Oi and Oj which take
into account the fact that the needle tips maximize If (z)I at z = zi:

n--1

jo cot ((0i - Oj)/ 2 ) = 0 ,V0 < i < n- 1. (5)

Now for the kinetics, the growth rate is supposed to be proportional to the potential
gradient along the needles. In addition, the growth is supposed to be restricted to
the tips. Therefore, following refs. 6 ' 14 , where only the tips grow, while the needles
remain at zero potential (model A), the growth rate of the needles is:

dfi 0C[En_1aj(1 + t2 O ))] -1/2 V0<i<n-I. (6

dt J=t

This equation will be used to determine the growth probability of the needles.
Now we have all the ingredients necessary to build the recursion relations to

describe the evolution of our system.

3 Matrix form of the basic equations

It appears first very convenient to introduce the matrix C = 1CiJ}o<ij~n-1 where:

S= cot ((0j - Oj)/2) (7)

and condition (5) may be simply written (V is the vector {fi}0 <i<n- 1):

C.-W = V . (8)

In a similar way, we can define D = {dij} 0 <j'j<n _ where di = 1 + c?.. Then

condition (6) is

dei/dt oc {D.Vj}i-1/2. (9)

3.1 Infinitesimal growth

We consider now that between t and t + 6t, a particle of size 6f sticks on needle
i. This increase of length is supposed much smaller than the distance between
needles, lraj. The equations can be linearized: for a variation 6fi of the length fi
corresponds the variations 65i of Oi and 60i of 0j. From (4) and (5) we find:

6fi = 6A/A - Z__ (c5/2) cot ((0i - Oj)/2) 605. (10)

As there are (2n + 1) variables in our system of 2n equations we have to impose
a supplementary constraint. One choice has been to fix one angle (for example
00 = 0, ref. 14). Here we will make the mean of the fi to remain zero (this choice
does not single out any angle). This fixes A via equation (4). Using (10), and

EZ 56 = 0,

(6A/A)1 = 1/(2n) O.C.a-, (11)
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where a6= {cij3j}0 <i<,_1. Here, 1 is the unit matrix and 0 = {1}ij a matrix
filled of l's. Replacing (11) into (10) gives 6fi as functions of 60j,

S= -1/2 (1 - (1/n) 0 ).C .•- , (12)

where (1 - (1/n) 0) is a projector on the subspace orthogonal to the completely

symmetrical component (for a vector V it is V0 = (1/n) Z' vi). The choice,
[f ", L}% ,..., -•-} corresponding to adding a particle 6f

on needle j, ensures the conservation of the mean length (equal to zero). The t is
for transposition (column vector). Eq. (12) allows to express the variations of 60j

as functions of the --. We can also relate 60i to 60j; Eq. (5) gives

0= -n-01 aj (60i - 60j) (1 + cot2 ((-Oj )/2)) . (13)

This makes it possible now to calculate the variations 60i:
60i = (D.-)i/(D.-•) . (14)

Now, Eq. (9) which provides the increase of needle length per unit time in the
diffusion field, enables us to introduce the growth probability Pi for a particle of
size 6f to stick on the tip of needle i during a time 6t. Let (D.V) = ff,

pi = dfi/(E dei) = (Hi)-1/ 2 / (E (fl)-l/ 2 ). (15)
i

The set of equations, (12), (14) and (15) together with (8) define the successive
iterations of the growth: if at time t, all the parameters are known, (15) determines

the growth probabilities on the tips; knowing the 6fi we calculate V via (12) then

6V via (14), and then the perturbation 6C of C, and 6D of D. To calculate - as
a function of 6Z we have to invert Eq. (12). Unfortunately, relation (8) shows that

Sis an eigenvector of C for the eigenvalue 0, and therefore C cannot be inverted
directly.

3.2 Invariants

In a global rotation bd of the angles 0 et 0 the configuration of the needles and thus

all the preceding expressions remain invariant. For example, C is left unchanged
and from (12) and (8) 6- also remains invariant:

-• =-(1/n) (1 - (I/n) 0) .C. (c-- + &9 = -(1/n) (C - (1/n) O.C) .00.

(16)

4 The two-needles problem

We are now ready to solve the two needles case. Here n = 2, but the needles are
periodically repeated due to the cyclic boundary conditions imposed as shown in
Fig.1. With the zero mean length constraint, we write,

0 = (VO + fl)/2-0; - = (f 0 - ýl)/2.



219

o a)

T I IL

T • - b)

Figure 1. a) Set of equally distant pairs of needles (co = a, = 1); b) General case.

The problem is completely defined by the knowledge of the probability P(il, t)
to find at time t a length gap i1. The general form of C, due to condition (8) and
of D with elements (dij = 1 + c?.) is expressed with two unknown functions co(fi)

and cl (71):

aco c 0-ctoc D + (csiCO) 2 1+ (aCtco) 2  (7
-alec1  aO0c 1  '1 + (OCc) 2 1 + (ctoC1) 2

the growth probabilities are then found from (15)

{pO(71) ' " 1 r+oc0•c 1
2a (18)

Vp(eT) j= -/1 + aooacO2 + 1 + t0 ao1c1
2  T1 + Oac1c 2

4. 1 Initial conditions

Fixing arbitrarily 0o(0) 0, the initial conditions (t = 0), are:

r(0) ={ý }; {ý }=(0);0 {Oo(O)} {2arccot Q/acl/o (19
0 010) 010) 2arccot '_al/co f 19

and for parameter A,

A = (ao)-°/2 (a,)-1/2 /2. (20)

From this we can calculate C (0) and D (0).
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4.2 Equations satisfied by co(TI) and c1(T'i)

From above, we deduce that the functions co(TI) and c1 (T1 ) verify the differential
equation:

dcO(e) (i + o~co(ei)) (i + alco( 1)2) =0 (21)
de'l co alo (1-+ - o alog 0(7l)2) + C(,)-}- 1( 1))

and, permuting co and cl, a similar equation for cl (el). The solutions of these
equations can be obtained parametrically:

co(f 1 ) = 1/(uV/ce-oc); c 1 (t 1 ) = u/ Va (22)

with the relation,

exp[ U( ao + alU2 ) (o-()/43)

The growth probabilities are then, from (18),

pO(el) = u/(1 + U); p1 (V1) = 1/(1 + u). (24)

4.3 Discrete Fokker-Planck equation

The Fokker-Planck equation of a pair of needles is, with 6Tl = Ue/2,

P(• 1 , t +- t) = PO (7 1 - 67,) P(" 1 -6e"1 , t) + pi (Ti +- 64) P(T" i71,t). (25)

The evolution Eq. (25) can be expanded to second order in Ut,

&P(fl,t)/&t = D.Bý P(71, t) -v.Dg (P(e",t) /((e1)) , (26)

where the following constants have been introduced,

v = 6/(26t) and D = 6f 2 /(8bt), (27)

v is the relative growth velocity of needle 0, D is the "diffusion" coefficient of the
sticking between the two needles, and f, = (f0 - l)/2. At short time the particles
stick at random on both needle tips, up to the moment when one needle gives way
to the other. The function t characterizes the screening effect,

U(1 = (U(1) - 1) /(u(1) + 1), (28)

where u(fl) is implicitly defined by (23). The graph of U(f I) is shown in Fig.2a.
In the linear region, when 4 -- 0

1(V) f1/(2ao0O1) (29)

and the diffusion dominates, while when 4, -4 ±oo, U(T) -4 ±1, and the longest
needle grows at velocity v. Eq. (26) represents the diffusion of a "particle" with
coordinate T1 in a potential,

V(T) = -v f-U(Tl)dTl. (30)
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Figure 2. a) Graph of U(i) for various values of ao; b) Effective potential V(&) when o = oe1 .

0.1

0.08

-1 -0.5 1 t

Figure 3. Distribution of probability P(is, t) at times t/6t = 20,30, .. , 120.

If the needles are equidistant, a0 = a, = 1, and u(f 1 ) = exp 1l, we have explicitly,

U(fl) = tanh (Ti/2). The potential (shown in Fig.2b) is then explicitly,

V(fl) = -v log (cosh(TI/2)). (31)

The time evolution of the solution of Eq. (26) for equal length needles (a 0 = a•1 = 1)
at t = 0 , is shown in Fig. 3.

4.4 Fluctuations of the difference between the branch lengths

The average of the difference between the branch lengths is zero by symmetry,

(K1) (t) = 0 1 P(f 1 , t)dfl = 0 (32)

because £'1P(( 1 , t) is odd. But the mean square fluctuation

K •I -- i (t) = K•)(t) = J 2(4 t)diT- (33)
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is different from zero. Its time evolution is given by the partial differential equation,

atil at d,(34)
v-, Pyi't -- O --o 1 O

Integrating by parts leads to,

j21 )
t 2D + 2v ýiiu(To)} (35)

at
When gl «< 1, Eq. (35) with (29) reduces to,

_K-- z. 2D + -(g) (36)
Ot aoOal

which has the following solution () smalleough ort,

-2aoaD exp -(1, (37)
v a oa )'1

The growth behaviour is diffusive ((T2) P 2Dt) , up to a time tdif (aoal/v).

5 Mullins-Sekerka instability of a comb of needles

Let us consider now the case of n equidistant needles for which V = t{ 1, 1n
In this case it is convenient to use the Fourier transform of the above equations.

5.1 Reduction of the vector space dimension

We introduce the Fourier transform of an arbitrary n-vector V

V = F.V with F = {(1/n) exp (27i jh/n)}o<_jh<_-1 (38)

To invert Eq. (12), we have to discard the completely symmetrical component,
which makes C singular. The working space will have now (n - 1) components, and
we will use an index r to specify its reduced vectors and the rectangular matrix
operators relating reduced (n - 1)-vectors to n-vectors. Thus, we introduce the
rectangular Fourier matrix :

Fr = {Fkh}l<k<n 1,0<h<n-1 (39)

The corresponding distribution of modes is,

Lrrf.7 =F , (40)

a particular mode k, being given by,
n--1

Tk = (1/n) E fj exp (27ri jk/n). (41)
j=0
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For an increase of length be on needle j,

6Lr[j] = Fr.--[j] = He/n {exp (27ri jk/n)}l<k<n_1 (42)

The reduced Fourier matrices lead to the following products: Fr.(F- 1 )- 1, and
(F- 1)r.F, = 1 - (1/n)O. In particular, this allows to write (12) as

I= (FI),.F,. C.V. (43)
n

It is now easy to invert Eq. (43). Let C - F,.C.(F- 1 ), then,

-n (F1)r.(Cr)-IFr.-. (44)

5.2 Evolution of the probabilities

The probability P(-L, t) to find the distribution of needle lengths -r at time t is

now replaced by the probability P(L,, t) to find a given Fourier mode, and we have

to build the Fokker-Planck equation which relates P(L,, t) and P(L, + 6Lr, t + St).

With probability Pi (L,) we add at time t a particle of size He on needle i. The

corresponding change of the lengths -- [i] induces a change in the angles 0 and p,

V[i] =-n(F1)•.(C)lF.5[i] •[i]= {{D. V-[i]}h ({D. 1}h) } (45)

from which we determine, by differentiation of Eq. (15), the value of pi(t + St):
±fl1~2  Z ;"2 2 Z 1nh (46)6rij +n1/2( 1:113-/2)-21:6"

pi(t + 6t = pi(t) - 21_3 2  +117/2 (

5.3 Initial conditions

In the present case for which the needles have an equal length at t = 0, the initial
angles Oi et Oj (0 < i, j <_ n - 1) are also regularly spaced :

Oi(0) = 27ri/n et Oj(O) = 7r(2j - 1)/n. (47)

5.4 Sticking probabilities in the linearized regime

From expression (45) we can calculate 0(0) and r-(0) corresponding to a variation

-- (0), for instance by adding a particle on needle h. Thus, if a particle of size U•
is stuck on needle h of a uniform comb, then the sticking probability of the next

particle is, using Eq. (46), (p(t = 0) = 1,Dj = {D. *}j, and Zj D1'/2 = 1)

1= + 1 Eji 6D(0)ij. (48)

The sticking probability Pi [h] of a new particle on needle i, while a particle is already
stuck on needle h (hih is the Kronecker symbol) is then,

pj[h] h- )+ U (n+l)(n - 1) h CSC2 ((i- h)ir/n)(1 - 5,h) (49)
n~]= +~(( 6n 2 -Z 2n2 (1 ih). 49
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Figure 4. Screening of the sticking probability by the longer needle h.

As expected, in this result we see that the other needles are screened by the longer
needle h. This is shown in Fig.4

6 Fokker-Planck equation of the linearized comb

Let P1in(-i, t) be the linearized probability to find a set of needles of size
-r = t{e0 , fl, ... , fh, ... , fn-i}; the linearization supposes that the lengths fi are

not too different in such a way that no needle can be completely screened (see Sec.
4). In the linearized approximation, the sticking probabilities on • are then the
superposition of the individual probabilities pJ [th], where pJ [fh] is deduced from
pj [h] by replacing HL by fh (superposition rule). If between t and t + St, a particle

SL is added on needle h and if L' - - 5-[h], then

n-1 n-1

Pli(-r, t + St) = E E phi[f] Pin (V--[h], t), (50)
h=0 j=0

with V[h]= t{0+ L,el +L,...,2h--U2+ ,.. 1_+ }.
We recover the linearized form of the particular case n = 2 of (25):

P1i'(fi, t±+6t) = (Pof0 1 [+b ±P0 [fL) Plin(T1 - 6T1 t) + (P'[f01] ±P[f1[e) Plin(l~ ± i, t)
(51)

as to first order,

Po (Tj - 6T)- (1 + ( f - L1 - UL)/4) /2 = pO[fl] + PO[14]

Pl1 -7,+ "(1- (I - fl - UL)/4) /2 = p[Lo] + P1[if]. (52)

In the general linearized case we obtain from Eqs. (49,50),

Pli (,( t + 6t) = n _h=O Plin (-L[h],t)+
1 i".n--1 'n--1 (ý j) S2(3

with Lh=• j=Ojh hLs ((h - j)d7/n) Pd (V E[h], t)(

with Llh] = L' - 6LEh] defined by Eq. (42).
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6.1 Fourier transform of the kinetic equation, and the Fokker-Planck equation

Equation (53) can be written after Fourier transformation,

-t-4

PSc n( L eait + tt) an--1 ( n 2_ 16 n-i- 2, (1- k ) "k ) . •4
6n2-- • n_ -nrh k Plin(--],t)

h=0 k=1

In the above equation, we have used the relation,

I• =,0 e n¢j csc2 (j•r/n) = (n - 6kn + 6k• 1)/3. (55)

Second order Taylor expansion of the above Eq. (54) with respect to SL,[hi makes

it clearer. Neglecting the third order terms in Ut, we find the remarkable Fokker-
Planck equation (note that T-k -= £n-k, k being defined modulo n),

at -F- (T " n~ nk 4 -- Plin ( L , t)

6 2 n- 1 o P ( L , t) 6f2 n-i • 2 P l (L r, t) (56)

k'=t aek'aLk, 2n6t k Ok'=1 aTk4-k,

When n = 2, we recover (26) linearized with a0 = oi= 1, and U(i1) -" ii/2 from
Eq. (29).

6.2 Short discussion of the linearized kinetic equation

Equation (56) contains three terms :
i) the first term is a drift term, associated with the growth velocity v. At the end

of the linear regime, we expect an exponential screening behavior similar to U(fi)

in the 2-needles case. The remarkable point lies in the factor k (1 --) T. If we

start from a situation where all the modes k have the same weight fk =- f, then due
to the !ý (1 - f) coefficient, the mode kmax = n/2 dominates progressively since it
has the highest growth rate. Due to screening, most of the other modes disappear,
and the system becomes equivalent to a comb of n/2 needles: a succession of period
doubling is the result of the growth.

ii) The second term couples the mode k and n - k.
iii) The third term is a mode coupling term, which merges two modes k' and k"

into a mode k = k' + k".

6.3 Correlation between modes and fluctuations of a mode q, in the initial
regime

We first calculate the correlation between modes,

-T2i q 2 P(L,,t)dL,. (57)
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Integration by parts using Eq. (56) gives,

a' TK~ T12 ) =~ 11 (i (1- _ ,) +~ (q2 q2) K12) + (58)
+ 6f 2+ 2 6 q1 +q2,0)+ bq1+q2,o + - 1- •l • o

2ri 26t q1 q 2n~t

The fluctuation of a mode q, can be also determined from Eq. (56) and leads to,

at KT2)Xin = 261 q (1-q q(T2) + (59)

+ 2 + Se2 (kn1- 6q,n/2)

which has a solution similar to the two-needles case, which underlined the existence
of a q-dependent effective velocity,

veff(q) = 2q (I _ (60)v~f~q-6t n n

-j 
2 Dl6q,n/2 + 2D 2 (1 - bq n/2)

)1n-veff (q) [exp (Veff (q)t) - 1] (61)

and shows that the mode q = n/2 has the fastest growth. We have noted,

D1 = 6f2 and D 2 -= .2 (62)
2n 26t 2n~t'

The correlation between the modes has a similar behaviour,

T11 T u2 ) _= Di qi+q 2 ,• + D 2 (1 -
6 q1+q2,') [exp(veff(qjq2)t)- l] (63)

lq Veff (ql, q2)

with an effective velocity,
St • q2 (1 q2\

veff(qlq2)= q( ( - ) + q(_q)) (64)
Kt -n - - n

Further studies are in progress to relate the linear regime to the screened regime

and to obtain analytically the scaling laws suggested numerically by Krug et al.4

and Adda Bedia14 .
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